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Abstract. The quantum phase transition in the ground state of the extended spin S = 1/2 XY model
has been studied in detail. Using the exact solution of the model the low temperature thermodynamics, as
well as the ground state phase diagram of the model in the presence of applied uniform and/or staggered
magnetic field are discussed.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 75.10.Jm Quantized spin models

1 Introduction

There is a considerable interest in models of strongly cor-
related electron and spin systems showing a Quantum
Phase Transition (QPT) (see Ref. [1]). In the case of One-
Dimensional electron or spin systems QPT related to the
dynamical generation of a charge or spin gap is often con-
nected with the change in the topology of the Fermi sur-
face, in particular with the doubling of the number of
Fermi points [2–5].

The one-dimensional spin S = 1/2 XY chain

HXY = −J
∑

n

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
(1)

is the simplest exactly solvable strongly correlated spin
model [6,7]. Its exact solution is expressed in terms of the
Fermi gas of spinless particles (spinless Fermions (SF)).
The free Fermi gas principle for construction of the sys-
tem eigenstates and eigenvalues provides the straightfor-
ward and easy way to obtain the exact expressions for
correlation functions and thermodynamic quantities (see
Ref. [8] and references therein).

More than thirty years ago M. Suzuki proposed the
whole class of generalized XY models with multi-spin in-
teraction, allowing the exact solution in terms of the Fermi
gas of spinless Fermions [9]. In the fermionic representa-
tion, the multi-spin coupling shows itself only through the
form of the single particle spectrum. In this paper we con-
sider the simplest of the proposed generalized XY models
– the extended XY model with three spin coupling. The
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Fig. 1. Schematic representation of the structure of the ex-
tended XY model.

Hamiltonian of the model is given by

H = −J
∑

n

(
Sx

nSx
n+1 + Sy

nSy
n+1

)
− J∗ (

Sx
nSx

n+2 + Sy
nSy

n+2

)
Sz

n+1 (2)

and describes the spin system determined on the zig-zag
chain (see Fig. 1), with the transverse exchange between
the spins on the nearest-neighbor sites J , and transverse
exchange between the spins on the next-nearest-neighbor
sites J∗, the latter depends on “z” orientation of the spin
being between the next-nearest-neighbors.

Despite its rather formal and possibly even nonrealistic
nature the model (2) attracted our attention owing to its
several important advantages:

• it is an exactly solvable model;
• the exact solution is expressed in terms of Fermi gas

of SF.

Moreover, as it is shown in this paper, the model (2) is
characterized by the rich ground state phase diagram. In
particular

• with the increase of three spin coupling, at J∗
c = 2J

the system experiences QPT from the Spin Liquid I
phase into the Spin Liquid II phase;

• in the SF representation this QPT is associated with
the doubling of Fermi points;
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• at the transition point the magnetic and low-
temperature thermodynamic properties of the system
show a well pronounced anomalous behavior;

• in the case of applied uniform and/or staggered mag-
netic field the system is characterized by the rich
ground state phase diagram which contains ferromag-
netic, antiferromagnetic and three different spin liquid
phases.

The paper is organized as follows. In the forthcoming
section we discuss the spinless Fermion representation of
the model. In the Section 3 the ground state properties
are discussed. In the Section 4 the low-temperature ther-
modynamics of the system is considered. In the Section 5
the ground state phase diagram of the model is studied in
the presence of magnetic field. Finally, the Section 6 con-
tains the discussion and concluding remarks. The paper
contains also two appendices. In Appendix A we present
the table with exact expressions for the so called emptiness
formation probability (EFP) P (n) for n = 1, ..., 20 and for
different values of the parameter J∗. In Appendix B we
present the expression for the EFP, which fits our exact
data for α ≥ αc.

2 Spinless fermion representation

The Hamiltonian (2) can be diagonalized by means of the
Jordan-Wigner transformation [10]

S+
n = Sx

n + iSy
n =

n−1∏
m=1

(
1 − 2c†mcm

)
c†n

S−
n = Sx

n − iSy
n =

n−1∏
m=1

cn

(
1 − 2c†mcm

)

Sz
n = c†ncn − 1

2
(3)

where c†n, cn are the spinless fermion (SF) creation
and annihilation operators, respectively. In fact, the
Hamiltonian (2) is transformed to a free spinless fermion
model as

H = −J

2

∑
n

(
c†ncn+1 + c†n+1cn

)

+
J∗

4

∑
n

(
c†ncn+2 + c†n+2cn

)
. (4)

We can diagonalize the Hamiltonian (4) by means of
the Fourier transformation to obtain

H =
∑

k

E(k)c†(k)c(k) (5)

where
E(k) = −J

(
cos(k) − α

2
cos 2k

)
(6)

and α = J∗/J .

Fig. 2. The spectra for different values of the parameter α.
For given α the corresponding curve is scaled so as to give the
same bandwidth equal to 2.

In what follows we assume that J > 0 and α > 0.
However, since the unitary transformation

Sx,y
n → (−1)nSx,y

n , Sz
n → Sz

n (7)

changes the sign of the nearest neighbor exchange constant
J → −J , one can easily reconstruct the features of the
system for J < 0 using the transformation (7). Moreover,
since the sign of the three spin coupling term is changed
by the time reversal transformation

Sy
n → Sy

n , Sx,z
n → −Sx,z

n , (8)

the properties of the system for α < 0 can be easily ob-
tained from the ground state phase diagram of the system
at α > 0 using the transformation (8).

In the thermodynamic limit (N → ∞), the ground
state of the system corresponds to the configuration where
all the states with E(k) ≤ 0 are filled and E(k) > 0 are
empty. For α < 0.5, the band minimum is at k = 0 (see
Fig. 2). If α > 0.5, the band minima ±kmin move away
from k = 0 and satisfy the relation cos(kmin) = 1/2α,
while a band maximum at k = 0 is E(0) = J (α/2 − 1).
Therefore, for α < 2 there are only two Fermi points at

±k−
F = arccos

[(
1 −

√
1 + 2α2

)
/2α

]
(9)

and the ground state corresponds to the configuration
when all states with |k| < k−

F are filled. At α = αc = 2
the band maximum at k = 0 reaches the Fermi level (see
Fig. 2) and at α > αc E(0) > 0 and therefore, two addi-
tional Fermi points appear at

±k+
F = arccos

[(
1 +

√
1 + 2α2

)
/2α

]
. (10)

In this case the ground state corresponds to the con-
figuration when all states with k+

F < |k| < k−
F are filled.

As we show in this paper, the change of the topol-
ogy of the Fermi surface of the equivalent SF model for
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Fig. 3. The ground state energy as a function of the parameter
α. The inset shows the generalized stiffness ξ as a function of
the parameter α

α > αc = 2 corresponds to the phase transition in the
ground state of the spin system. This transition is the
second order quantum phase transition, which at the tran-
sition point is characterized by

• non-monotonic behavior of the ground state en-
ergy E0(α) as a function of the parameter α. In par-
ticular, the first derivative of the ground state energy
with respect to the parameter α shows a kink, while
the second derivative is divergent at α = αc;

• magnetization of the system as a function of the pa-
rameter α shows the non-monotonic and nonanalytical
behavior at α = αc;

• the critical index characterizing the power-law decay of
the transverse spin-spin correlation function is changed
at α = αc;

• At low temperature (T � J) the heat capacity, magne-
tization and magnetic susceptibility of the system show
a well pronounced anomalous behavior at α � αc.

This quantum phase transition, despite its obviously
rich nature, can be studied using the exact solution of
the model (2), given in terms of Fermi gas of spinless
particles (5).

3 Phase transition in the ground state

The ground state energy of the system is given by

E0(α) =
L

2π

∫
{Λ}

E(k)dk (11)

where the integration region {Λ} = [−k−
F , k−

F ] for α < 2
and {Λ} = [−k−

F ,−k+
F ] ∪ [k+

F , k−
F ] for α > 2.

In Figure 3 we plotted the ground-state energy of the
system as a function of the parameter α. At α = αc we
observe (see inset in Fig. 3) the singularity in the behavior
of the generalized stiffness

ξ(α) = −∂2E0(α)/∂2α.

Fig. 4. The ground state magnetization as a function of the
parameter α. The inset shows the derivative of magnetization
with respect to the parameter α.

The singularity in ξ(α) we attribute to the second-order
phase transition in the ground-state of the system with
the increase of the three-spin coupling constant J∗ = αJ .

3.1 Magnetization

Most clearly, the change of the properties of the system at
the transition point is seen in the non-monotonic behavior
of magnetization. At T = 0 the magnetization (per site)
of the system is given by the number of SF in the ground
state

mz(α) =
1
L

∑
n

〈Sz
n〉 =

{
k−

F /π − 1/2 at (α < 2)(
k−

F − k+
F

)
/π − 1/2 at (α > 2).

(12)
Using equations (9–10) we found that the ground-state

of the system is singlet with mz = 0 only at α = 0 (the XY
model) and in the limiting case α = ∞. For arbitrary
nonzero α, the magnetization of the system is finite. It
is a monotonically increasing function of the parameter
α in the range of 0 < α < 2 (see Fig. 4). It reaches its
cusp-type maximum at α = 2 with mz = 1/6 and then
monotonically decreases to zero with α → ∞.

The derivative of magnetization with respect to the
parameter α (see Inset in the Fig. 4) is

∂mz(α)/∂α �



const. at (α − αc → 0−)

− 1√
α − αc

at (α − αc → 0+).
(13)

3.2 Correlation functions

To clarify the symmetry properties of various phases re-
alized in the ground state of the system, we calculate the
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longitudinal and transverse spin-spin correlation functions

Kz(r) = 〈Sz
nSz

n+r〉 , (14)

Ktr (r) = 〈Sx
nSx

n+r〉 = 〈Sy
nSy

n+r〉· (15)

The spin-spin correlations in the case of ordinary XY
chain (α = 0) were studied in the classical paper by Lieb,
Schulz and Mattice [6]. The longitudinal spin-spin corre-
lation function is

Kz(r) − m2
z ∼ r−2

and the transverse correlation function decays more slowly

Ktr (r) ∼ r−1/2.

For further results on these correlation functions, see ref-
erence [11].

In our calculations of correlation functions we follow
the route used in reference [6]. In this approach the cor-
relation functions are given in terms of Toeplitz determi-
nants. Using the Jordan-Wigner transformation (3) one
can easily found that

Kz(r) = det ĝ =
1
4

∣∣∣∣∣
g(0) g(r)

g(r) g(0)

∣∣∣∣∣ =
1
4

(
g2(0) − g2(r)

)
(16)

and

Ktr (r) = det Ĝ =
1
4

∣∣∣∣∣∣∣∣∣∣∣

g(1) g(2) . . . g(r)
g(0) g(1) . . . g(r − 1)
. . . . . . . . . . . .

. . . . . . . . . . . .

g(2 − r) g(3 − r) . . . g(1)

∣∣∣∣∣∣∣∣∣∣∣
.

(17)
Here

g(r) =
2
πr

sin(k−
F r) − δ0r (18)

at α < αc, and

g(r) =
2
πr

[
sin(k−

F r) − sin(k+
F r)

] − δ0r (19)

at α > αc.
After straightforward calculations we obtain that

for α < αc

Kz(r) = m2
z − 1

π2

sin2(k−
F r)

r2
(20)

and for α > αc

Kz(r) = m2
z − 1

π2

(
sin(k−

F r) − sin(k+
F r)

)2

r2
· (21)

As we observe, the quadratic decay of the longitudinal
correlations remains unchanged at the transition point.
However, the additional oscillations in the longitudinal
correlation function ∼cos(2k+

F r) and ∼cos
(
(k−

F ± k+
F )r

)

associated with the presence of two Fermi points are
clearly seen.

The transverse correlation undergoes more dramatic
change. We obtain that, for α < αc

Ktr (r) =
A

r1/2
+

B cos(2k−
F r)

r5/2
(22)

and for α > αc.

Ktr (r) =
B1 cos(k−

F r + ϕ−))
r

+
C1 cos

(
k+

F r + ϕ+

)
r

+
D1 cos

(
(2k−

F − k+
F )r + ϕ1

)
r3

+
E1 cos

(
(2k+

F − k−
F )r + ϕ2

)
r3

· (23)

Here A = A(α), ...E1(α) are the smooth functions of the
parameter α.

Below the gapless phase with the power-law decay of
spin-spin correlations given by equations (20, 22) is called
the Spin Liquid I (SL-I) phase, while the gapless phase
with the power-law decay of spin-spin correlations given
by equations (21, 23) – the Spin Liquid II (SL-II) phase.

The behavior of the correlation functions given by
equations (20–23) perfectly fits into the usual conformal
theory results for the systems with several gapless excita-
tions [12,13].

3.3 Emptiness formation probability

The very important quantity which characterizes a quan-
tum spin system in the spin-liquid phase is the so called
emptiness formation probability (EFP) [14], i.e. the prob-
ability to find a ferromagnetic string of the length “n” in
the spin liquid ground state

P (n) =

〈
GS|

n∏
j=1

(
Sz

j +
1
2

)
|GS

〉
. (24)

To calculate the EFP we follow the route developed
in the recent paper by Siroishi et al. [15]. In the SF
representation the EFP is described in terms of the
following determinant

P (n) =

∣∣∣∣∣∣∣∣∣∣∣

f11 f12 . . . f1n

f21 f22 . . . f2n

. . . . . . . . . . . .

. . . . . . . . . . . .

fn1 fn2 . . . fnn

∣∣∣∣∣∣∣∣∣∣∣
, (25)

where
fnm = 〈GS|c†ncm|GS〉 = 1/(2π)

∫
Λ

dq exp(−iq(n − m)) .

(26)
For α < αc

fnm =
2

π(n − m)
sin(k−

F (n − m)/2) cos(k−
F (n − m)/2)

(27)
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Fig. 5. The emptiness formation probability P (n) at n = 2
and n = 8 as a function of the parameter α.

and for α > αc

fnm =
1

π(n − m)
[sin(k−

F (n − m)) − sin(k+
F (n − m))]

=
2

π(n − m)
sin([k−

F − k+
F ](n − m)/2)

× cos([k−
F + k+

F ](n − m)/2). (28)

Using equations (25–28) we calculated the exact values
of EFP P (n) for n = 1, ..., 20. The results of these calcu-
lations are presented in the Table 1 (see Appendix A). In
Figure 5 we plotted the EFP P (n) as a function of the
parameter α for n = 2 and n = 8. As it is clearly seen
from this figure the EFP shows the nonmonotonic behav-
ior at α = αc.

To consider whether QPT leads to the change in the
asymptotic (n → ∞) behavior of EFP we derived the
analytical expressions for EFP at α < αc and α > αc

which fit the numerical data.
At α < αc, (in full agreement with the results ob-

tained in the Ref. [15]) we obtain the following expression
for EFP

P<(n) = C

(
cos

k−
F

2

)−1/4

n−1/4

(
sin

k−
F

2

)n2

, (29)

where C = 0.6450.
At α � αc we obtain the following expression for EFP,

which fits our exact data

P>>(n) =
[
sin

(
k−

F − k+
F

2

)
sin

(
k−

F + k+
F

2

)]n2
2

×
(

A1 + (−1)nB1

n1/2

)
, (30)

where A1 = 0.659 and B1 = 0.054. In the intermediate
regime, for α ≥ αc the fitting formula is more complicated

Fig. 6. Order Parameter as a function of the parameter α.

and is presented in Appendix B. As we see, the QPT in
the system manifestly changes the EFP.

3.4 Order parameter

The QPT at α = αc from the SL-I to the SL-II phase
requires an Order Parameter for complete description. As
the order parameter we introduce the following quantity

η(α) = L̄ExtXY − L̄SL−I (31)

where

L̄ExtXY =
∑

nP (n)∑
P (n)

(32)

is the average length of the ferromagnetic string in the
ground state of the extended XY chain with coupling α
and, respectively, the magnetization mz(α), while L̄SL−I

is the same quantity calculated in the SL-I phases with
the same value of the magnetization.

Straightforward calculations give (see Fig. 6)

η(α) =

{
0 at (α − αc → 0−)
√

α − αc at (α − αc) → 0+).
(33)

Thus, the order parameter exhibits the standard mean-
field type behavior.

4 Thermodynamics

The QPT with respect to the parameter α in the ground-
state of the system (2) is smeared out by thermal
fluctuations at finite temperatures. Thus, the thermody-
namic quantities have no singularities but, in the low-
temperature region T � J they show a well pronounced
anomalous behavior at |α − αc| � T/J .

To investigate the thermodynamics of the system let
us first calculate the free energy. In the thermodynamic
limit the free energy of the system is given by

F = −T

∫
dωρ(ω) ln [2 cosh (ω/2T )] . (34)
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The SF density of states ρ(ω) is nonzero and equal to

ρ(ω) = ρ−(ω) (35)

for α < 2 and for α > 2 and E(0) < ω < Wmax. For α > 2
and Wmin < ω < E(0)

ρ(ω) = ρ−(ω) + ρ+(ω) . (36)

Here Wmin = min{−J(2 − α)/2,−J(2α2 + 1)/4α},
Wmax = J(α + 2)/2, and

ρ±(ω) =
1

πJ

2α

Gα(ω/J)
1√

4α2 − [1 ± Gα(ω/J)]2
, (37)

where
Gα(ω/J) =

√
1 + 2α2 + 4α(ω/J) . (38)

Knowing the free energy it is easy to obtain the ex-
pression for the entropy

S =
∫ ∞

−∞
dωρ(ω)

[
ln

(
2 cosh

( ω

2T

))
−

( ω

2T

)
tanh

( ω

2T

)]
.

(39)
Below in this section we study the anomalies in

the low-temperature behavior of different thermodynamic
quantities, caused by the presence of the QPT in the
ground state at α � αc.

4.1 Specific heat

The anomalous temperature dependence in the vicinity
of the QPT is seen most clearly in the low-temperature
behavior of the specific heat. The heat capacity of the
system is given by

C =
∫ ∞

−∞
dωρ(ω)

(ω/2T )2

cosh2 (ω/2T )
· (40)

Away from the critical point, the density of states in
the vicinity of the Fermi level ρ−(0) at α � αc and ρ−(0)+
ρ+(0) at α � αc, respectively, is the constant of the order
of ∼ 1/J . Therefore, in these cases the specific heat of the
system

C(T ) � γ (T/J)

with γ ∼ 1.
However, in the vicinity of the critical point, at

|α − αc| ≤ |ω/J |,

ρ+(ω) � 1
π
√

6J |ω| (41)

and therefore, in this case the heat capacity of the sys-
tem exhibits the anomalous square root dependence on
the temperature

C = γ1

√
T/J + γ(T/J). (42)

In Figure 7 we plotted the heat capacity of the ex-
tended XY model for different values of the parameter α.

Fig. 7. The specific heat of the system as a function of the
parameter T/J for different values of the parameter α. The
inset shows the specific heat of the system at T/J � 1.

Since the bandwidth of the system depends on the param-
eter α, in Figure 7 we plotted the results for the models
with normalized bandwidth WR = 2J . In the inset we
present the low-temperature (T � J) heat capacity. The
anomaly in the behavior of heat capacity at α = αc = 2
is clearly seen.

4.2 Magnetization and magnetic susceptibility
at T �= 0

At finite temperature the magnetization of the system is
proportional to the average number of spinless fermions

mz
α(T ) = −1

2

∫ ∞

−∞
dωρ(ω) tanh (ω/2T ) , (43)

while the magnetic susceptibility is given by

χ(T ) =
1

4T

∫ ∞

−∞
dωρ(ω)

1
cosh2 (ω/2T )

· (44)

Let us first consider the limiting case of small temper-
atures T/J � 1. In this case it can be easily obtained,
that for α � αc

mz
α(T ) = mz

α(0)
(

1 − π2

2
(T/J)2 + O((T/J)4)

)
, (45)

χα(T ) = χα(0)
(

1 +
π2

12
(T/J)2 + O((T/J)4)

)
, (46)

and for α � αc

mz
α(T ) = mz

α(0)
(
1 + 2π2(T/J)2 + O((T/J)4)

)
, (47)

χα(T ) = χα(0)
(

1 +
2π2

3
(T/J)2 + O((T/J)4)

)
. (48)
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Fig. 8. Magnetization of the system as a function of temper-
ature for different values of the parameter α. The inset shows
the magnetic susceptibility of the system as a function of tem-
perature for different values of the parameter α.

• The low temperature (T/J � 1) expansion shows that
magnetization of the system decays with temperature
at α < αc, and magnetization of the system increase
with the increase of the temperature at α > αc.

• The magnetic susceptibility of the system is finite both
for α � αc and α � αc and shows the inverse square
root dependence on temperature for |α − αc| � T/J .

In the case of coupling close to the critical value,
at |α − αc| � T/J

mz
α(T ) = mz

α(0)
[
1 − β1/2(T/J)1/2 − β3/2(T/J)3/2

− β2(T/J)2 + O((T/J)5/2)
]
, (49)

χ(T ) = β−1/2 (TJ)−1/2 + ρ−α (ω = 0) + O(T/J)2 . (50)

Here

β1/2 = −
√

2 − 1√
12π

ζ(1/2) > 0 , (51)

β3/2 =
√

2 − 1
96

√
6π

ζ(3/2) > 0 , (52)

β2 =
π

81
√

3
, (53)

β−1/2 =
1√
6π

(2
√

2 − 1)ζ(−1/2) > 0 , (54)

and ζ(z) is the Riemann’s zeta function.
Let us now consider in detail the problem of anomalous

temperature dependence of magnetization for α > αc. In
Figure 8 we plotted the magnetization of the system as
a function of temperature for three different values of the
parameter α = 1, 2 and 4. From Figure 8 it is clearly seen
that at α = 4 the magnetization reaches its maximum at

Fig. 9. Magnetization of the system as a function of the pa-
rameter α at different values of temperature.

T = 0.15J and then smoothly decays with the increase of
temperature.

To gain more insight into the behavior of magnetiza-
tion in Figure 9 we plotted the magnetization as a function
of the parameter α for different values of the temperature.
As it is clearly seen from Figure 9, M(T ) < M0 ≡ M(T =
0) at arbitrary T when α < αc. But at α > αc there does
exist the crossover temperature Tc, and so M(T ) > M0 for
0 < T < Tc and M(T ) < M0 for T > Tc. We calculated Tc

as a function of the parameter α (see inset in Fig. 9) and
found that Tc monotonically increases with the increase
of α from its minimum value Tc = 0 at α = αc = 2 up to
Tc = 0.186J at α → ∞ .

The source of such unusual behavior is the structure of
the excitation spectrum: at α �= 0 the ground state of the
system is characterized by the magnetization Mα

0 . At α <
αc, the excited states with magnetization M = Mα

0 ± m
have equal energy for arbitrary m = 1, 2, ... Therefore, for
α < αc at arbitrary finite temperature Mα(T ) < Mα

0 . On
the other hand, for α > αc the excitation spectrum of the
system exhibits a clear anisotropy: at least some lowest
excited states with magnetization M = Mα

0 + m (with
m = 1, 2..., m0) are far below their counterparts with
magnetization M = Mα

0 − m. Therefore, at sufficiently
low temperatures, where the states with magnetization
M > M0

α are occupied mainly, the total magnetization
of the system increases. However, with further increase
of the temperature, the difference in occupation of states
with M = M0

α ± m reduces, and finally, at T > Tc, the
magnetization of the system drops below its ground state
value.

5 Properties of the system in the presence
of external magnetic field

In this section we consider the properties of the ex-
tended XY spin chain (2) in the presence of an external
magnetic field. We consider the general case, where the
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field dependent part of the Hamiltonian is given by

H = −
∑

n

(H0 + (−1)nHδ)Sz
n . (55)

In terms of spinless Fermions the Hamiltonian of the
extended XY model in the presence of an external mag-
netic field reads

H = −J

2

∑
n

(
c†ncn+1 + c†n+1cn

)

+
J∗

4

∑
n

(
c†ncn+2 + c†n+2cn

)

−
∑

n

(H0 + (−1)nHδ)
(

c†ncn − 1
2

)
· (56)

Below in this section we consider separately the ground
state phase diagram of the extended XY spin chain in the
case of:

• applied uniform magnetic field Hδ = 0;
• applied staggered magnetic field H0 = 0;
• applied magnetic field acting only on the spins on the

even sites H0 = Hδ = H .

5.1 Uniform magnetic field

In the case of applied uniform magnetic field (Hδ = 0,
H0 = hJ) the diagonalization of the Hamiltonian is
straightforward and gives

H =
∑

k

E1(k)c†(k)c(k) (57)

where

E1(k) = −J
(
h + cos(k) − α

2
cos 2k

)
. (58)

The phase diagram of the model in the case of applied
uniform magnetic field is presented in Figure 10:

• For hJ < Wmin and hJ > Wmax the system is in the
ferromagnetic phase.

• For − (
1 − 1

2α
)

< h <
(
1 + 1

2α
)

the system is in the
SL-I phase.

• For α > 0.5 and − (
2α2 + 1

)
/4α < h < − (

1 − 1
2α

)
the system is in the SL-II phase.

5.2 Staggered magnetic field

In the case of applied staggered magnetic field (H0 = Jh,
Hδ = Jhδ) it is useful to introduce two types of spinless
fermions determined on the odd and even sub-lattices, re-
spectively

c2n−1 ≡ an−1/2 and c2n ≡ bn. (59)

Fig. 10. The ground state phase diagram of the model in the
case of applied uniform magnetic field.

In terms of these new particles, the Hamiltonian in the
momentum space reads

H =
∑

k

[
(εa(k)a†

kak + εb(k)b†kbk + εab(k)
(
a†

kbk + b†kak

) ]
(60)

where

εa(k) =
J∗

2
cos(2k) − h0 + hδ ,

εb(k) =
J∗

2
cos(2k) − h0 − hδ ,

εab(k) = −J cos k . (61)

Using the standard Bogoliubov rotation

ak = cos
(

1
2
θk

)
αk + sin

(
1
2
θk

)
βk

bk = − sin
(

1
2
θk

)
αk + cos

(
1
2
θk

)
βk (62)

where

tan(θk) =
2εab(k)

εa(k) − εb(k)
(63)

we finally obtain

H =
∑

k

(
E−(k)α†

kαk + E+(k)β†
kβk

)
, (64)

where

E±(k) = J

(
α

2
cos 2k − h ±

√
h2

δ + cos2 k

)
. (65)

Let us first consider the case of the staggered magnetic
field (H0 = 0). The ground state phase diagram of the
model in this case consists of the following four sectors
(see Fig. 11):

• At |hδ| > 1
2α the system is in the long-range ordered

Neél anti-ferromagnetic phase.
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Fig. 11. The ground state phase diagram of the model in the
case of applied staggered magnetic field.

There is a gap in the spin excitation spectrum. The lon-
gitudinal spin-spin correlation function is

Kz(r) = 〈Sz
nSz

n+r〉 � (−1)rf(α)

where f(α) is the constant of the order of unity for given α.

• At α < 2 and |hδ| < 1
2α as well as for α > 2 and√

α2−4
4 < |hδ| < 1

2α the system is in the SL-I phase;

• At α > 2 and |hδ| <
√

α2−4
4 the system is in the SL-II

phase.

5.3 Mixed magnetic field

In this subsection we consider a rather special case, where
the mixed magnetic field with equal strength of the uni-
form and staggered components H0 = Hδ = hJ . This cor-
responds to the case, where the magnetic field of the 2hJ
strength is applied to the spins on the even sites, while
the spins on the odd sites experience no magnetic field.

The spectrum of the system in this case is given by

Ẽ±
2 (k) = J

(α

2
cos 2k − h ±

√
h2 + cos2 k

)
. (66)

The ground state phase diagram of the model (60) in
the case of applied mixed magnetic field consists of the
following four sectors (see Fig. 12)

• At α <
√

2 and − 4−α2

4α < h < − 1
4α the system is in

the long-range ordered Neél antiferromagnetic phase;
• At α >

√
2 and − 1

4α < h < − 4−α2

4α the system is in
the SL-II phase;

• At h > max{− 1
4α;− 4−α2

4α } the system is in the SL-I
phase;

• At h < min{− 1
4α;− 4−α2

4α } the system is in the SL-III
phase.

Fig. 12. Phase diagram for Uniform Magnetic field + alter-
nating Magnetic field

The new SL-III phase corresponds to the gapless phase
characterized by qualitatively different behavior of the
long-range spin-spin correlations for the spins located on
the even and odd sites. The calculation of the longitudinal
spin-spin correlations between the spins on the even sites
gives

Kz
0,2m(r = 2m) = (meven

z )2 , (67)

between the spins on the odd sites

Kz
1,2m+1(r = 2m) = (modd

z )2 − B

r2
, (68)

and between the spins on even and odd sites

Kz
1,2m(r = 2m − 1) = meven

z modd
z (69)

respectively. Here meven
z < 0 and modd

z > 0 is the mag-
netization per site of the even and odd sub-lattices, re-
spectively, which is calculated at the given value of the
coupling α. The parameter B is a smooth function of the
coupling constant α and at the given α it is the constant of
the order of unity. For example, at h = −0.4 and α = 1.5
meven

z = −0.3406 and modd
z = 0.1690. Therefore, in the

SL-III phase, we have antiferromagnetically coupled two
ferromagnetically ordered sub-lattices.

In the SL-III phase the transverse correlations also
show the unusual behavior. In particular, the transverse
spin correlation between the spins on the even sites is

Ktr
0,2m(r = 2m) = 0 , (70)

between the spin on the odd sites

Ktr
1,2m+1(r = 2m) � (−1)m

r1/2
, (71)

and between the spins on the even and odd sites

Ktr
1,2m(r = 2m− 1) � (−1)m

r3/2
· (72)
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Table 1. The emptiness formation probability P (n).

α = 0 α = 1 α = 2 α = 4 α = ∞
〈mz〉 = 0 〈mz〉 = 0.1193 〈mz〉 = 1/6 〈mz〉 = 0.0213387 〈mz〉 = 0

n = 1 0.5 6.1928 ×10−1 6.6667 ×10−1 5.2134 ×10−1 0.5

n = 2 1.4868 ×10−1 2.9576 ×10−1 3.6845 ×10−1 2.6455 ×10−1 0.25

n = 3 2.3679 ×10−2 1.0251 ×10−1 1.6136 ×10−1 8.4078 ×10−2 7.4339 ×10−2

n = 4 1.9453 ×10−3 2.5041 ×10−2 5.4640 ×10−2 2.5783 ×10−2 2.2105 ×10−2

n = 5 8.1263 ×10−5 4.2525 ×10−3 1.4127 ×10−2 4.5135 ×10−3 3.5205 ×10−3

n = 6 1.7152 ×10−6 4.9869 ×10−4 2.7702 ×10−3 7.6228 ×10−4 5.6069 ×10−4

n = 7 1.8232 ×10−8 4.0241 ×10−5 4.1052 ×10−4 7.0945 ×10−5 4.6062 ×10−5

n = 8 9.7402 ×10−11 2.2298 ×10−6 4.5877 ×10−5 6.3746 ×10−6 3.7841 ×10−6

n = 9 2.6122 ×10−13 8.4729 ×10−8 3.8609 ×10−6 3.1110 ×10−7 1.5808 ×10−7

n = 10 3.5137 ×10−16 2.2060 ×10−9 2.4448 ×10−7 1.4664 ×10−8 6.6036 ×10−9

n = 11 2.3691 ×10−19 3.9329 ×10−11 1.1641 ×10−8 3.7291 ×10−10 1.3938 ×10−10

n = 12 8.0036 ×10−23 4.7992 ×10−13 4.1656 ×10−10 9.1615 ×10−12 2.9420 ×10−12

n = 13 1.3543 ×10−26 4.0070 ×10−15 1.1200 ×10−11 1.2099 ×10−13 3.1272 ×10−14

n = 14 1.1475 ×10−30 2.2884 ×10−17 2.2619 ×10−13 1.5439 ×10−15 3.3240 ×10−16

n = 15 4.8677 ×10−35 8.9382 ×10−20 3.4304 ×10−15 1.0568 ×10−17 1.7758 ×10−18

n = 16, 1.0336 ×10−39 2.3871 ×10−22 3.9063 ×10−17 6.9905 ×10−20 9.4872 ×10−21

n = 17 1.0984 ×10−44 4.3587 ×10−25 3.3395 ×10−19 2.4771 ×10−22 2.5443 ×10−23

n = 18 5.8409 ×10−50 5.4406 ×10−28 2.1431 ×10−21 8.4825 ×10−25 6.8235 ×10−26

n = 19 1.5534 ×10−55 4.6420 ×10−31 1.0323 ×10−23 1.5538 ×10−27 9.1783 ×10−29

n = 20 2.0604 ×10−61 2.7070 ×10−34 3.7316 ×10−26 2.7538 ×10−30 1.2346 ×10−31

6 Conclusion

In conclusion, we investigated the ground state phase di-
agram and the low-temperature thermodynamics of the
extended XY model with nearest-neighbor exchange (J)
and three-spin interaction J∗ = αJ . At J∗ �= 0 the spin
system is characterized by the broken time reversal sym-
metry and for arbitrary α �= 0,∞ shows a finite magne-
tization in the ground state M0 (α). We have shown that
with the increase of the three-spin coupling the Quantum
Phase Transition from the Spin-Liquid-I into the Spin-
Liquid-II phase takes place. In the Spin-Liquid-I phase,
at α < α∗

c = 2 the properties of the extended XY chain
are similar to those of the standard XY model in the
presence of such an “effective” magnetic field that ensures
the same value of the GS magnetization M0. However, in
the Spin-Liquid-II phase, at α > αc, the behavior of the
magnetization, magnetic susceptibility, emptiness forma-
tion probability and different spin-spin correlation func-
tions is qualitatively different and could not be considered

by the simple effect of an “effective” magnetic field. The
anomalous behavior of the heat capacity of the system,
entropy, magnetization and magnetic susceptibility con-
nected with the presence of QPT in the ground state has
been shown. The ground state phase diagram of the model
in the case of applied uniform and/or staggered magnetic
field has been also obtained.
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7GEPJ62379. G.I.J. also thanks Arno P. Kampf for hospitality
and interesting discussions during his stay at Augsburg Uni-
versity, where a part of this work has been done. I.T. also
acknowledges the World Federation of Scientists for support.

Appendix A

In this appendix we present the exact values of the
EFP P (n) for different values of the parameter α, ob-
tained by evoluation of the Toeplitz determinant (25).
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Table 2. The coefficients of the fitting formula (73) for the
emptiness formation probability P (n) for different values of
the parameter α > αc.

α A1 B1 C1 D1

2.005 0.155 0.009 0.302 0.314
2.01 0.204 0.011 0.370 0.194
2.05 0.331 0.018 0.350 0.072
2.1 0.351 0.021 0.322 0.063
2.2 0.572 0.032 0.150 0.021
2.3 0.673 0.037 0.064 −0.003
2.4 0.683 0.039 0.045 −0.006
2.5 0.685 0.041 0.036 −0.006
3 0.682 0.045 0.012 −0.005
4 0.675 0.050 −0.0002 −0.004
10 0.662 0.053 −0.006 −0.003
∞ 0.661 0.054 0 0

Appendix B

In this appendix we present the expression for the EFP,
which fits our exact data for α ≥ αc:

P>(n) =
[
sin

(
k−

F − k+
F

2

)
sin

(
k−

F + k+
F

2

)]n2
2

×
(

A1 + (−1)nB1

n1/2
+

C1 + D1 cos(k+
F n)

n1/4

)
· (73)

For different values of the parameters α the fitting val-
ues of the coefficients A1, ...D1 are given in Table 2.
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